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Intelligent systems in the context of surrounding environment
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~Received 5 April 2001; published 30 October 2001!

We investigate the behavioral patterns of a population of agents, each controlled by a simple biologically
motivated neural network model, when they are set in competition against each other in the minority model of
Challet and Zhang. We explore the effects of changing agent characteristics, demonstrating that crowding
behavior takes place among agents of similar memory, and show how this allows unique ‘‘rogue’’ agents with
higher memory values to take advantage of a majority population. We also show that agents’ analytic capa-
bility is largely determined by the size of the intermediary layer of neurons. In the context of these results, we
discuss the general nature of natural and artificial intelligence systems, and suggest intelligence only exists in
the context of the surrounding environment~embodiment!.

DOI: 10.1103/PhysRevE.64.051920 PACS number~s!: 87.19.La, 07.05.Mh, 05.65.1b, 87.18.Sn
po
us
e
u

ne
ur
th
,
e,
fo
a

th

is
es

t-

e

e
e
e
e
u
m
al

et
er
n
l-

-
f
h
ty

o
llet
in

om-

a
is
i-
ate

in
ion,

a
li-
our
ng
t a
its

be
t of
the

ri-
be-
el
by
ant
he
w a
the
y
ilar
tar-
-
-

ler,
nts.
ep-
e an

rfor-
I. INTRODUCTION

Much research has been done into the computational
sibilities of neural networks. Yet the engineering and ind
trial applications of these models have often eclipsed th
use in trying to come to an understanding of naturally occ
ring neural systems.

Whereas in engineering we often use single neural
works to attack a single problem, in nature we see ne
systems in competition. Humans, for example, invest in
stock market, attempt to beat their business rivals, or
extreme examples, plan wars against each other. We ar
Darwin identified a century and a half ago, in competition
natural resources; our neural systems—i.e., our brains—
among the main tools we have to help us succeed in
competition.

In collaboration with Chialvo, one of the authors of th
paper has developed a neural network model that provid
biologically plausible learning system@1#, based essentially
around ‘‘Darwinian selection’’ of successful behavioral pa
terns. This simple ‘‘minibrain’’1—as we will refer to it from
now on—has been shown to be an effective learning syst
being able to solve such problems as the exclusive-OR ~XOR!
problem and the parity problem. Crucially, it has also be
shown to be easily able tounlearnpatterns of behavior onc
they become unproductive—an extremely important asp
of animal learning—while still being able to remember pr
viously successful responses, in case they should prove
ful in the future. These capabilities, combined with the si
plicity of the model, provide a powerful case for biologic
feasibility.

In choosing a competitive framework for this neural n
work, we follow the example of Metzler, Kinzel, and Kant
@2#, using the delightfully simple model of competitio
within a population provided by the minority model of Cha
let and Zhang@3# ~itself based on the ‘‘El Farol’’ bar prob
lem created by Arthur@4#!. In this game, a population o
agents has to decide, independently of each other, whic
two groups they wish to join. Whoever is on the minori

1Source code for the programs used can be found
http://neuro.webdrake.net/.
1063-651X/2001/64~5!/051920~8!/$20.00 64 0519
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side ‘‘wins’’ and is given a point. By combining these tw
models—replacing the fixed strategies of agents in Cha
and Zhang’s model with agents controlled by the minibra
neural system—we have a model of neural systems in c
petition in the real world.

This is not the first model of coevolution of strategies in
competitive game—a particularly interesting example
Lindgren and Nordahl’s investigation of the prisoner’s d
lemma, where players on a cellular grid evolve and mut
strategies according to a genetic algorithm@5#. However, we
believe that the biological inspiration for the minibra
model, and its demonstrated capacity for fast adapt
makes our model of special interest.

The structure of this paper is as follows. We begin with
discussion of what we mean when we talk about ‘‘intel
gence,’’ noting how historical influences have shaped
instinctive ideas on this subject in potentially misleadi
ways; in particular, we take issue with the suggestion tha
creature’s intelligence can be thought of as separate from
physical nature. We suggest that intelligence can only
measured in the context of the surrounding environmen
the organism being studied: we must always consider
embodimentof any intelligent system.

This is followed by the account of the computer expe
ments we have conducted, in which we investigate the
havioral patterns produced in the minibrain/minority mod
combination, and the ways in which they are affected
changing agent characteristics. We show how signific
crowding behavior occurs within groups of agents with t
same memory value, and demonstrate how this can allo
minority of high-memory agents to take advantage of
majority population and ‘‘win’’ on a regular basis—and, b
the same token, condemn a population of largely sim
agents to continually losing. Indeed, perhaps the most s
tling implication of this model is that, in a competitive situ
ation, having a ‘‘strategy’’ might well prove worse than sim
ply making random decisions.

These results are in strong contrast with those of Metz
Kinzel, and Kanter, whose paper inspired these experime
In their simulations, a homogeneous population of perc
tron agents relaxes to a stable state where all agents hav
average 50% success rate, and overall population pe
mance is better than random@2#. The perceptrons learn, in

at
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JOSEPH WAKELING AND PER BAK PHYSICAL REVIEW E64 051920
effect, to produce an efficient market system, and do
suffer from the crowding effect produced by minibra
agents. By the same token, however, it seems unlikely th
superior perceptron could win on a similar scale to a supe
minibrain.

We conclude with further discussion on the nature of
telligence, suggesting a conceptual approach that we be
will enable easier investigation of both natural and art
cially created intelligent systems. Having already sugges
that we must consider ‘‘embodied’’ intelligences, we provi
criteria for cataloguing that embodiment, consisting of ha
wired parts—the input and output systems of the organi
the feedback mechanism that judges the success or failu
behavioral patterns—alongside a dynamic decision-mak
system that maps input to output and updates its metho
ogy according to the signals received from the feedback
tem.

II. WHAT IS ‘‘INTELLIGENCE’’?

TheE. Coli bacterium has a curious mode of behavior.
it senses glucose in its immediate surroundings, it will mo
in the direction of this sweet nourishment. If it does not,
will flip over and move a certain distance in a random dire
tion, before taking stock again, and so on, and so on unt
finds food.

Bacteria are generally not considered to be ‘‘intelligen
Yet this is a systematic response to environmental stim
not necessarily thebestresponse but nevertheless aworking
response, a satisfactory response. TheE. Coli bacterium is
responding in an intelligent way to the problem of how
find food. How do we square this with our instinctive feelin
that bacteria arenot intelligent? Are our instincts mistaken
How, instinctively, do we define intelligence?

Historically, philosophers have often proposed the idea
a separation between ‘‘body’’ and ‘‘mind.’’ The huma
mind, from this point of view, is something special, som
thing distinct, something not bound up in the messy busin
of the real world. It is this, we are told, that separates us fr
the animals: we have this magical ability tounderstand, to
think, to comprehend—the ability to view the world in a
rational, abstract way and thus arrive at some fundame
truth about how the universe works.

The idea of separate compartments of reality for body
mind has lost its stranglehold over our way of thinking, b
its influence lingers on in our concept of intelligence. O
minds, our consciousness, may be the result of physical
cesses, but we still cling to the idea that we have the ab
to discover an abstract reality, and it’s this idea that infor
our notion of ‘‘intelligence.’’ An intelligent being is one tha
can see beyond its own personal circumstances, one th
capable of looking at the world around it in an objecti
fashion. Given enough time, it can~theoretically! solve any
problem you care to put before it. It is capable of risi
above the environment in which it exists, and comprehe
ing the nature of True Reality.

Naturally, this has informed our ideas about artificial i
telligence. An artificially intelligent machine will be one tha
works in this same environmentally uninhibited manner.
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we tell it to drive a car, it will be able~given time to teach
itself! to drive a car. If we tell it to cook a meal, it will be
able to cook a meal. If we tell it to prove Fermat’s la
theorem . . . All of these, of course, assume that we ha
given it some kind of hardware with which to gather inp
and make output to the relevant system, whether car, kitch
or math textbook—assume, indeed, that we have these
tems present at all—and it is this necessity that causes u
realize that in fact,the mind and its surrounding environme
~including the physical body of the individual) are insep
rable. Our brains are the product of evolution; they are n
an abstract, infinite system for solving abstract, infinite pro
lems, but rather a very particular system for solving the v
particular problems involved in coping with the environme
tal pressures about us. In this respect, we are no diffe
from theE. Coli bacterium we discussed earlier: the enviro
ments we inhabit are different, and consequently so are
behavioral patterns, but on a conceptual level there is n
ing to choose between us.

Intelligence only exists in the context of its surroundi
environment. So, if we are to attempt to create an artifici
intelligence system, we must necessarily also define a w
in which it will operate. And the question ofhow intelligent
that system is can only be answered by examining how g
it is at coping with the problems this world throws up, by i
ability to utilize the data available to it to find working so
lutions to these problems.

III. ‘‘MINIBRAIN’’ AGENTS IN THE MINORITY MODEL

The ‘‘minibrain’’ neural system, developed by one of th
authors in collaboration with Chialvo@1#, is an extremal
dynamics-based decision-making system that responds t
put by choosing from a finite set of outputs, the choice be
determined by Darwinian selection of good~i.e., successful!
responses to previous inputs~negative feedback!. We use the
simple layered version of this model, consisting of a layer
input neurons, a single intermediary layer of neurons, an
layer of output neurons; each input neuron is connected
every intermediary neuron by a synapse, and similarly e
intermediary neuron is connected to every output neur
Every synapse is assigned a ‘‘strength,’’ initially a rando
number between 0 and 1.

Competing against each other in the minority model, ea
agent receives data about the past, and gives as output w
of the two groups—we label them 0 and 1—that it wishes
join. We follow the convention of Challet and Zhang’s ve
sion of the game, that this knowledge is limited to knowi
which side was the minority~i.e., winning! group at each
turn in a finite number of past turns@3#, so that agent input
can be represented by a binary number ofm bits, wherem is
the agent’s memory. So, for example, if in the last three tu
group 0 lost, then won, then won again, this would be re
resented by the binary number 110, where the left-most
represents the most recent turn, and each bit is determine
the number of thelosing ~majority! group that turn~we
choose these settings in order to match the way our comp
code is set up!.
0-2
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INTELLIGENT SYSTEMS IN THE CONTEXT OF . . . PHYSICAL REVIEW E 64 051920
In order to preserve symmetry of choice between the
groups, an agent with a memory ofm turns will have 2m
input neurons, with the first of thei th pair of neurons firing if
the bit representing the resulti turns ago is 0, the secon
neuron of thei th pair firing if the result was 1. For example
if an agent with a memory of 3~and hence with 6 inpu
neurons! is given the past 110 as we discussed above, t
the second, fourth, and fifth input neurons will fire. Figure
gives a picture of this architecture~to avoid over complicat-
ing the diagram, not all connections are shown!.

To determine the intermediary neuron that fires, we ta
for each the sum of the strengths of the synapses conne
it to the firing input neurons. The intermediary neuron w
the greatest such sum is the one that fires. Then, the ou
neuron that fires (0 or 1) is the one connected to the fir
intermediary neuron by the strongest synapse.

Each turn, the synapses used are ‘‘tagged’’ with a che
cal trace. If the output produced that turn is satisfactory~in
this setup, if the agent joins the minority group!, no further
action is taken. If the output is not satisfactory, however
global feedback signal~e.g., the release of some hormone! is
sent to the system, and the tagged synapses are ‘‘punish
for their involvement in this bad decision by having the
strengths reduced~in our model, by a random number be
tween 0 and 1). As we noted in the Introduction, this D
winian selection of successful behavioral patterns has
ready been shown to be an effective learning system w
‘‘going solo’’ @1#; how will it cope when placed in compe
tition?

Figure 2 shows the success rates of agents of diffe
memory values. A group of 251 agents has an even sprea
memory values between 1 and 8; each agent has 48 inte
diary neurons. The figure shows their success rates ov
period of 23104 turns.

To a certain extent, these results reflect those found
Challet and Zhang when they explore the behavior o
mixed population of fixed-strategy agents@3#, inasmuch as
performance improves with higher memory but tends to sa
rate eventually. Standard deviation within each mem
group is much lower for minibrain agents, however, sugge
ing crowding behavior within memory groups, and we w
later show that this does indeed occur.

Disappointingly, we see that not one agent achieves
much as a 50% success rate—they would all be better

FIG. 1. Architecture of minibrain agents. Every input neuron
connected to every intermediary neuron, and every intermed
neuron is connected to every output neuron. For our setup, we
two outputs, and 2m inputs, wherem is the agent’s memory.
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tossing coins to make their decisions. The even spread
memory values throughout the population means that ag
with higher-memory values cannot take full advantage
their extra knowledge: the crowding behavior betwe
agents with the same memory cancels out most of the p
tive effects. It is no good having lots of data on which
base your decision if lots of other people have that sa
data—everyone will come to the same conclusion and, in
minority model, that means losing.

Necessarily, then, one of the conditions for an agent
succeed—i.e., to beat the coin-tossing strategy—is that th
must be few other agents with the same amount of mem
This is demonstrated starkly in Fig. 3, displaying the resu
for a population of 251 agents of whomonehas a memory of
3, the rest only 2.

The astonishing success of this ‘‘rogue’’ agent~it makes
the right decision approximately 99.8% of the time! shows
clearly just how important a factor this crowding behavior
in the success~or failure! of agents. The fact that this agent
the only one receiving the extra data means that he can u

ry
ve

FIG. 2. Success rates of a mixed population of minibrain age
against their memory. Agents have 48 intermediary neurons.

FIG. 3. Success rate of a single agent of memory 3, versu
250-strong population of memory 2. Agents have 48 intermedi
neurons.
0-3
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JOSEPH WAKELING AND PER BAK PHYSICAL REVIEW E64 051920
to his advantage. Contrast this with the other agents who
all their careful thinking, fail miserably becausealmost all of
them think alike—entirely independently—almost all of
time.

This example leads us to ask the more general ques
given a population of agents who all have memorym, can we
always find such a ‘‘rogue,’’ an agent capable of understa
ing and thus beating the system? That it is not merel
matter of agent memory is amply demonstrated in Fig.
where we see a population of memory 4 pitted agains
rogue with a memory of 8.

Despite its high memory value~twice that of the majority
population! the rogue agent is unable to beat the coin-toss
strategy. Why is this? A higher memory value should, by o
earlier results, always be an advantage. Certainly, since
have respected symmetry of choice between agent outpu
should not be adisadvantage. What factor is it that prevents
this agent from making full use of the memory available
it, memory that surely has within it useful data patterns t
predict the behavior of the agents with memory 4, and t
should allow the rogue agent the success we expect
achieve?

The answer becomes clear when we examine the natu
the input that each agent receives—a binary number
lengthm, wherem is the value of the agent’s memory. So,
follows that the total possible number of inputs will be 2m.
For an agent with memory 4, this means 16 possible inp
For an agent with memory 8, the total number of possi
inputs is 256. Compare this to the number ofintermediary
neurons possessed by each agent (48, in all the simula
we have run so far! and we realize that, while this is a
adequate number for an agent receiving 16 different poss
inputs, it is wholly inadequate for an agent having to d
with some 256 possible inputs. The number of intermedi
neurons restricts the maximum performance of an agen
placing a limit on the amount of memory that can be effe
tively used.

Bearing this condition in mind, we run another set
games, again with a majority population of memory 4, b
this time with a rogue of memory 5, and with the number
intermediary neurons given to each agent varying in eac

FIG. 4. Success rate of a single agent of memory 8, versu
250-strong population of memory 4. Agents have 48 intermed
neurons.
05192
or

e

n:

-
a
,
a

g
r
e

, it

t
s
to

of
of

s.
e

ns

le
l
y
y

-

f
t
f
of

these games. Figure 5 shows the results of games w
agents have intermediary layers of, respectively, 64, 96, 1
and 256 neurons.

The implications are clear—it is the number of interm
diary neurons, as well as the amount of memory, that con
whether or not a rogue agent can succeed, and, if it does
how much. A higher memory value will always be an adva
tage, but the degree to which it is advantageous will be
termined by the number of intermediary neurons posses
Memory, obviously, determines how much information
agent can receive; the intermediary neurons are what pro
agents’ analytic capability.

Our computer simulations suggest that in situations s
as the ones already discussed, with a majority population
memory m, it is the intermediary neurons, rather than t
amount of memory possessed, that control the ability o
rogue agent to succeed. A memory ofm11 is all that is
required,provided the rogue has enough intermediary ne
rons to be able to use it effectively.

We can muddy the waters, so to speak, by giving
majority population an evenly distributedspreadof memory
values ~perhaps from 1 tom) rather than a single value
Where a single memory value is used, the crowding beha
observed within memory groups will easily allow rogu
agents to predict the minority group. With a series of diffe
ent, smaller groups in competition, it becomes significan
less easy to make accurate predictions, and rogue agent
cess rates fall significantly. Herding sheep is fairly ea
jumping into the middle of a brawl is dangerous for anyon
even a world champion martial artist.

All things considered, it seems as though this may be
key point in determining agent success. An agent can only
truly successful if it has plenty of ‘‘prey’’ whose weakness
it can exploit. If the behavior of the prey is highly unpredic
able, or the prey are capable of biting back, the age
chances of success are vastly reduced.

a
y

FIG. 5. Success rates of single agents of memory 5, vers
250-strong population of memory 4, in simulations with 64, 9
128, and 256 intermediary neurons per agent.
0-4
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IV. ANALYSIS OF CROWDING BEHAVIOR
WITHIN MEMORY GROUPS

We have on several occasions referred to crowding
havior of minibrain agents within the same memory grou
In this section, we give a brief mathematical analysis of w
causes this to arise.

We begin with a simple case, assuming that all age
have the same memory value. Obviously, because of the
ture of the game, a majority of these agents will behave
the same way each turn. What we show, however, is that
majority is significantly more than would be found if th
agents were deciding randomly as to which group to jo
Were agents to employ this strategy, the mean size of
~losing! majority group would be only a little over 50%.

We define by 0<xi(I ),0.5 the proportion of agents in
the minority group given inputI, where the subscripti is the
number of times inputI has occurred before. If an input ha
not been seen before by agents, it follows that they w
decide randomly which group to join, and so we ha
x0(I ).0.5 for all possible inputsI.

If an input has been seen before, it follows that thos
agents in the minority group on that occasion—i.e., tho
who were successful—will make the same decision as
time. Those who were unsuccessful last time will make
random decision as to which group to join. We can expe
on average, half of them to change their minds, half to s
with their previous choice.

The effect of this, ironically, is that this last group—th
unsuccessful agents who keep with their previous choic
will probably ~in fact, almost certainly! form the minority
group this time round. And so we can define a recurre
relation,

xi 11~ I !.
1

2
@12xi~ I !#,

determining the expected proportion of agents joining
minority group for each occurrence of inputI. This allows us
to develop a more general equation,

xi 11~ I !.w~ i ,I !,

where

w~ i ,I !5
1

3 S 2i1~21! i 21

2i D 1
~21! i

2i 11
@12x0~ I !#.

Observe that this holds fori 50, as a little calculation
reveals x1(I ). 1

2 (12x0(I ))5w(0,I ). Now, assume the
equation holds fori 5n21, with n any positive integer, so
xn(I ).w(n21,I ).

By the recurrence relation,
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xn11~ I !.
1

2
@12xn~ I !#

5
1

2
@12w~n21,I !#

5
1

2 F12H 1

3 S 2n211~21!n22

2n21 D
1

~21!n21

2n
~12x0~ I !!J G

5
1

2 F1

3 S 332n2122n211~21!n21

2n21 D
1

~21!n

2n
~12x0~ I !!G

5
1

2 F1

3 S 2n1~21!n21

2n21 D 1
~21!n

2n
@12x0~ I !#G

5
1

3 S 2n1~21!n21

2n D 1
~21!n

2n11
@12x0~ I !#

5w~n,I !.

Hence,xn11(I ).w(n,I ), and so by the induction hypothes
xi 11(I ).w( i ,I ) for all i>0.

It follows, then, that asi→`, so xi(I )→ 1
3 , and so, with

repeated exposure to the inputI, we will find that on average
2
3 of the agents will produce the same output. As a result,
average majority size per turn~regardless of input given! will
also tend to2

3 as the agents become saturated by all
possible inputs.

This can be observed in Fig. 6, which shows the aver
proportion of agents joining the majority group each turn
eight different games involving single memory value pop
lations, the first involving agents of memory 1, the seco

FIG. 6. Mean size of majority each turn in games with unifor
agent memory, against different choices for this memory va
Agent population per game is 251, but majority size is given p
portionally. Agents have 48 intermediary neurons.
0-5
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JOSEPH WAKELING AND PER BAK PHYSICAL REVIEW E64 051920
with agents of memory 2, and so on up to the final gam
with agents of memory 8. Each game takes place over a
period of some 53103 turns.

As memory increases, so the number of possible inp
also increases, meaning there is less repeated exposu
individual inputs, and hence less crowding for a given tim
period. Within a time scale of 53103 turns, the behavior of
agents with longer memories is random more often than
and so the mean size of majority is similar to that of age
making random decisions. As the number of turns increa
so we can expect the mean size of the majority to tend t2

3

for all memory values, not just the lowest.
What implications does this have for games involving

mixed population of agents, such as that displayed in Fig
Overall, the same principles will apply. Repeated expos
to the same input will produce the same crowding effect. B
we note that the inputs given to this system—eight-digit
nary numbers—are interpreted differently by differe
agents. For agents with lower memories, many of these ‘‘
ferent’’ inputs are interpreted as being the same. For
ample, the inputs 11010010 and 11001011 are the same
agent with a memory of 3 or less. So—as is demonstrated
Fig. 6—the crowding effect surfaces earlier in agents w
lower memory values, and hence they are adversely affe
to a greater degree.

The agents with higher memory values fail to beat
50% success rate, however, because there are too ma
them—any insights they might have into the crowding b
havior of the lower memory groups are obscured by the
tions of their fellow high-memory agents. Thus, the kind
behavior we see in Fig. 2: the lower-memory agents perfo
the worst, with the success rate increasing towards s
‘‘glass ceiling’’ as agent memory increases. It’s only uniq
‘‘rogue’’ agents, who don’t have a large group of fellow
who can see the crowding effect and thus beat the syste

Even such rogue agents cannot succeed by any great
gin in the case where they are pitted against a sprea
memory values. The crowding behavior of the individu
groups is obscured by the large number of them and pre
tions become difficult; the rogue has to work out, not just
which direction the crowding within each group will go, b
how much crowding will be taking place in each group—
difficult task indeed.

If we increase the crowding, we also increase the rogu
chances of success. Figure 7 shows the results from
different games involving 251 agents. Five of them a
‘‘rogue’’ agents with memory values of, respectively, 4,
6, 7, and 8. The rest have an even spread of memory va
from 1 to 3. In order to allow the higher memory values
be useful, we give agents 256 intermediary neurons.
difference between the games is that in the first, when p
ishing unsuccessful synapses, we employ the principle
has been used throughout this paper—synapses are pun
once. In the second game, the punishment does not stop
the agent has learned what would have been the correct
put. The result is that, when an input has been seen be
we will have 100% agreement within memory groups.

We can see here how the increased crowding cause
‘‘infinite’’ punishment allows the rogues to take advanta
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and be successful. A higher memory value is required
substantial success, but substantial success is possible
the expense of the lower memory groups, whose succ
rates are substantially decreased by the extra crowding
havior they are forced to produce. The rogue agents in
game with single punishment, by contrast, are barely abl
do better than a 50% success rate—though they can
dently gleansome data from the crowding behavior dis
played by the lower-memory groups, it is not sufficient f
any great success and they are only barely able to bea
expected success rate, were they to make purely random
cisions.

This is a striking result, to say the least.The inevitable
consequence of an analytic strategy is a predisposition
failure. Challet and Zhang@3# and Arthur @4# have already
shown that fixed strategies can prove to be a disadvan
compared to random decisions; this occurs when the num
of available strategies is small compared to the numbe
agents. The crowding behavior that results from minibr
agents’ imperfect analysis will inevitably reduce the numb
of strategies in use, thus dooming them to worse-th
random results.

We can see this at work in the real world, every da
Many strategies—whether for investments, business str
gies, forming a relationship, or any of the myriad problem
we have to solve—fail, because they are based on com
knowledge, and as such, will be similar to most other p
ple’s strategies. We are often told, ‘‘Everybody knows th
. . . ,’’ but few people realize the negative side of followin
such advice: sinceeverybodyknows it,everybodywill come
to the same conclusions as you, and so your strategy wil
unlikely to succeed. Perhaps the best recent example is
internet boom and bust: so many people thought the inte
was the place to invest, the market overheated, and m
companies went belly up.

FIG. 7. Success rates of rogue agents of memory 5 –8, vers
majority population with memory 1 –3, in games involving sing
punishment and ‘‘infinite’’ punishment of unsuccessful synaps
Total agent population is 251. Agents have 256 intermedi
neurons.
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INTELLIGENT SYSTEMS IN THE CONTEXT OF . . . PHYSICAL REVIEW E 64 051920
As this paper was being prepared, a report was broad
on UK television about an experiment in which a four-ye
old child, picking a share portfolio, was able to outdo high
experienced City traders on the stock market. In such
tems, with everyone’s imperfect analysis competing aga
everyone else’s, it seems highly likely that random decisi
sometimes really are the best; the minibrain/minority mo
combination would appear to confirm this.

V. ‘‘INTELLIGENCE’’ RECONSIDERED

Another interesting conclusion to be drawn from the co
puter experiments here described is that, given some par
lar minibrain agent, there is no way of deciding if it will b
successful or not unless we know about the other agen
will be competing with.

In a sense this is not surprising. We know, for examp
that to be a high flier at an Ivy League university requir
considerably more academic ability than most other edu
tional institutions. The athlete coming last in the final of t
Olympic 100 m can still run faster than almost anyone else
the world. We know thatin these contextsthe conditions to
be the ‘‘best’’ are different, but there is surely still an over
comparison to be made between the whole of humanity.
is there? Recall our suggestion in the introduction to t
paper that the question of how intelligent a system is
only be answered by examining how good it is at cop
with the problems its surrounding environment throws u
To return to minibrain agents: by the concepts we discus
earlier, it is agents’intelligence, and not just their succes
rate, that is dependent on their fellows’, as well as their ow
characteristics. Indeed, the two measures—success
intelligence—cannot be separated.

Contrast this with how we have identified a whole ran
of factors—memory, the number of intermediary neuro
the amount of punishment inflicted on unsuccess
synapses—that affect the manner in which an agent
forms. There are objective comparisons that can be m
between agents. While we might accept that any measur
‘‘intelligence’’ we can conceive of will only hold in the con
text of the minority model, surely it is not fair to suggest th
the only valid measure of intelligence is success rate in
context of the population of agents we place within th
world?

Before we rush off to define our abstract ‘‘agent IQ
however, it is worth noting that all the measures ofhuman,
as well as minibrain, intelligence that we have put in pla
are in fact measures of success in particular contexts. W
a teacher calls a pupil a ‘‘stupid boy,’’ he is not commenti
on the child’s intelligence in some abstract sense, but ra
the child’s ability to succeed at the tasks he is set in
school environment.~Einstein was considered stupid in th
context of a school environment where dyslexia and Aspe
er’s syndrome were unknown.! When we say that huma
beings are more intelligent than other animals what we
fact mean is that human beings are more successful at
nipulating their environment to their own benefit. High flie
at Ivy League universities are considered intelligent beca
of their academic success. Olympic athletes are consid
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intelligent in the context of their sport because they are
pable of winning consistently.

Even human IQ tests, long thought to provide an abstr
and objective measure of intelligence, work in this fashio
being a measure of an individual’s success in solving log
problems. More recently these tests have been shown to
criminate against certain individuals based on their cultu
background—a further indication of their nonabstract, no
objective nature—and in addition to this, psychologists
now proposing that there are other forms of intelligence,
exampleemotionalintelligence or ‘‘EQ,’’ which are just as
important to individual success as intellectual ability.

Were abstract measures of intelligence possible, it wo
be reasonable to ask: ‘‘Who was more intelligent, Albe
Einstein or Ernest Shackleton?’’ As it turns out, this quest
is impossible to answer. Shackleton probably lacked E
stein’s capacity for scientific imagination, Einstein probab
didn’t know a great deal about arctic survival, but both we
highly successful—and thus by implication intelligent—in
the context of their own chosen way of life.The same is true
of our hypothetical Ivy League student and Olympic runn
We suggest that no other possible measure of intelligenc
truly satisfactory.

It is not an entirely easy concept to take on board.
particular, it conflicts with our instinctive sense of what
means to be ‘‘intelligent.’’ Casually—and not s
casually—we talk about people’s intelligence in the cont
of their understanding, their conceiving, their awareness. In
other words, we talk about it in the context of theircon-
sciousness. In their paper ‘‘Consciousness and Neur
science’’@6#, Crick and Koch refer to the philosophical con
cept of a ‘‘zombie,’’ a creature that looks and acts just like
human being but lacks conscious awareness. Using the
cepts of intelligence we have been discussing, this creatu
just as intelligent as a real human.

Yet, on closer examination, this is not such an unreas
able idea. Such a ‘‘zombie’’ is probably scientifically unte
able, but it should be noted that our measures of ‘‘inte
gence’’ do not measure consciousness, at least not explic
A digital computer can solve logical problems, for examp
and it seems very unlikely that such computers are c
scious. The ‘‘emotional intelligence’’ we referred to earli
almost certainly has some unconscious elements to it:
ability to respond to a situation in an appropriate emotio
manner tends to be an instinctive, more than a consci
response. Lizards, it is thought, lack a conscious sens
vision but they can still catch prey, find a mate, and so
using their visual sense to do so. In fact, most of the org
isms that exist on earth are probably not conscious. C
sciousness, most likely, is a product of brain activity that i
useful survival aid, a useful aid for success. Anaid for suc-
cess, and thus for intelligence, rather than a requiremen

How, then, should we approach the question of what is
intelligent system? In their description of the construction
the minibrain neural system, Bak and Chialvo note: ‘‘Bio
ogy has to provide a set of more or less randomly connec
neurons, and a mechanism by which an output is deem
unsatisfactory . . . . It is absurd to speak of meaningful bra
processes if the purpose is not defined in advance. The b
0-7
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JOSEPH WAKELING AND PER BAK PHYSICAL REVIEW E64 051920
cannot learn to define what is good and what is bad. T
must be given at the outset. From there on, the brain is o
own’’ @1#. These concepts provide us with a way of thinki
about intelligent systems in general, whether naturally occ
ring biological systems or man made artificial intelligen
systems.

An intelligent system might be thought of as consisting
the following parts:

~i! A hardwired set of inputs and outputs, which the s
tem cannot change.It can perhaps change which of them
takes notice of and which of them it uses, but its options
fixed and finite.

~ii ! A decision-making system.Given an input, a system
atic process is applied to decide what output to make. T
can range from the purely deterministic~e.g., a truth table of
required output for each given input! to the completely ran-
dom. TheE. Coli bacterium’s behavior in response to th
presence or otherwise of glucose—either moving in the
rection of the food or, if none is to be found, in a rando
direction—is a perfect example.

~iii ! A hardwired system for determining whether a giv
output has been successful, and sending appropriate f
back to the system. Again, the nature of this can vary. In ou
computer experiments, success is defined as being in the
nority group. For theE. Coli bacterium, success is findin
food. Possible types of feedback range from the positive
inforcement of successful behavior practiced by many ne
network systems, to the negative feedback of the Minibr
model. TheE. Coli bacterium provides perhaps the mo
extreme example: if it does not find food within a certa
time period, it will die.

The last of these is perhaps the most difficult to come
terms with, simply because as human beings, we inst
tively feel that it is aconsciouschoice on our part as to
whether many of our actions have been successful or
Nevertheless, the ultimate determination of success or fai
must rest with hardwired processes over which the decis
making system has no control. If nothing else, we are
subject to the same consideration asE. Coli: if our actions do
not provide our physical bodies with what they need to s
vive, they, and our brains and minds with them, will peris

We should, perhaps, include an extra criterion that fo
system to betruly intelligent, the feedback mechanism mu
in some way affect the operation of the decision-making s
tem, whether it is punishing ‘‘bad’’ synapses in the min
brain neural network, changing the entries in a truth table
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killing a bacterium. A system that keeps making the sa
decision regardless of how consistently successful that d
sion is, isn’t being intelligent. With this in mind, we migh
consider systems such asE. Coli ~i.e., systems that employ
one single strategy, and when it becomes unsuccessful
ply stop! to be minimally intelligentsystems. They are no
where near as smart as other systems, natural and artifi
but at least they know when to quit.

Intelligence, we suggest, is not an abstract concept.
question of what is intelligent behavior can only be answe
in the context of a problem to be solved. So in the search
artificial intelligence, we must necessarily start with t
world in which we want that intelligence to operate; we ca
not begin by creating some ‘‘consciousness in a box’’
which we then give a purpose, but must first establish w
we want that intelligence todo, before building the
systems—input/output, decision-making, feedback—t
will best achieve that aim. Computer programmers alrea
have an instinctive sense of this when they talk about,
example, the ‘‘AI’’ of a computer game.~Purpose: to bea
the human player. No longer the deterministic strategies
Space Invaders—many modern computer games displa
great subtlety and complexity of behavior.! This is not to
denigrate attempts to build conscious machines. Such
chines would almost certainly provide the most power
forms of artificial intelligence. But we are still a long wa
from understanding what consciousness is, let alone be
able to replicate it, and as we have noted here, conscious
is not necessarily needed for intelligent behavior.

The experiments discussed in this paper involve ‘‘to
models. Comparing the minibrain neural system to the r
human brain is like comparing a paper airplane to a jum
jet @1#. But paper airplanes can still fly, and there are s
lessons to be learned. These ‘‘toy’’ experiments provide
with a context to begin identifying what it means to be i
telligent. We have been able to suggest criteria for ident
ing intelligent systems that avoid the controversial issues
consciousness and understanding, and a method of deter
ing how intelligent such systems are that rests on one sim
useful, and practical question: how good is this system
doing what it is meant to do? In other words, we and oth
have begun to demystify the subject of intelligence and m
neuver it into a position where we can begin to ask prec
and well-defined questions. Paper airplanes can fly for m
if they’re launched from the right places.
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