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Intelligent systems in the context of surrounding environment
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We investigate the behavioral patterns of a population of agents, each controlled by a simple biologically
motivated neural network model, when they are set in competition against each other in the minority model of
Challet and Zhang. We explore the effects of changing agent characteristics, demonstrating that crowding
behavior takes place among agents of similar memory, and show how this allows unique “rogue” agents with
higher memory values to take advantage of a majority population. We also show that agents’ analytic capa-
bility is largely determined by the size of the intermediary layer of neurons. In the context of these results, we
discuss the general nature of natural and artificial intelligence systems, and suggest intelligence only exists in
the context of the surrounding environméambodiment
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[. INTRODUCTION side “wins” and is given a point. By combining these two
models—replacing the fixed strategies of agents in Challet
Much research has been done into the computational pognd Zhang’s model with agents controlled by the minibrain
sibilities of neural networks. Yet the engineering and indusneural system—we have a model of neural systems in com-
trial applications of these models have often eclipsed theipetition in the real world.
use in trying to come to an understanding of naturally occur- This is not the first model of coevolution of strategies in a
ring neural systems. competitive game—a particularly interesting example is
Whereas in engineering we often use single neural nettindgren and Nordahl's investigation of the prisoner’s di-
works to attack a single problem, in nature we see neurdemma, where players on a cellular grid evolve and mutate
systems in competition. Humans, for example, invest in thestrategies according to a genetic algoritfBh However, we
stock market, attempt to beat their business rivals, or, ibelieve that the biological inspiration for the minibrain
extreme examples, plan wars against each other. We are, awdel, and its demonstrated capacity for fast adaption,
Darwin identified a century and a half ago, in competition formakes our model of special interest.
natural resources; our neural systems—i.e., our brains—are The structure of this paper is as follows. We begin with a
among the main tools we have to help us succeed in thatiscussion of what we mean when we talk about “intelli-
competition. gence,” noting how historical influences have shaped our
In collaboration with Chialvo, one of the authors of this instinctive ideas on this subject in potentially misleading
paper has developed a neural network model that provideswiays; in particular, we take issue with the suggestion that a
biologically plausible learning systefi], based essentially creature’s intelligence can be thought of as separate from its
around “Darwinian selection” of successful behavioral pat- physical nature. We suggest that intelligence can only be
terns. This simple “minibrain®—as we will refer to it from  measured in the context of the surrounding environment of
now on—has been shown to be an effective learning systenthe organism being studied: we must always consider the
being able to solve such problems as the exclusméxor) embodimenof any intelligent system.
problem and the parity problem. Crucially, it has also been This is followed by the account of the computer experi-
shown to be easily able tanlearnpatterns of behavior once ments we have conducted, in which we investigate the be-
they become unproductive—an extremely important aspedtavioral patterns produced in the minibrain/minority model
of animal learning—while still being able to remember pre-combination, and the ways in which they are affected by
viously successful responses, in case they should prove usehanging agent characteristics. We show how significant
ful in the future. These capabilities, combined with the sim-crowding behavior occurs within groups of agents with the
plicity of the model, provide a powerful case for biological same memory value, and demonstrate how this can allow a
feasibility. minority of high-memory agents to take advantage of the
In choosing a competitive framework for this neural net-majority population and “win” on a regular basis—and, by
work, we follow the example of Metzler, Kinzel, and Kanter the same token, condemn a population of largely similar
[2], using the delightfully simple model of competition agents to continually losing. Indeed, perhaps the most star-
within a population provided by the minority model of Chal- tling implication of this model is that, in a competitive situ-
let and Zhand 3] (itself based on the “El Farol” bar prob- ation, having a “strategy” might well prove worse than sim-
lem created by Arthuf4]). In this game, a population of ply making random decisions.
agents has to decide, independently of each other, which of These results are in strong contrast with those of Metzler,
two groups they wish to join. Whoever is on the minority Kinzel, and Kanter, whose paper inspired these experiments.
In their simulations, a homogeneous population of percep-
tron agents relaxes to a stable state where all agents have an
!Source code for the programs used can be found a@verage 50% success rate, and overall population perfor-
http://neuro.webdrake.net/. mance is better than randof]. The perceptrons learn, in
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effect, to produce an efficient market system, and do notve tell it to drive a car, it will be ablégiven time to teach
suffer from the crowding effect produced by minibrain itself) to drive a car. If we tell it to cook a meal, it will be
agents. By the same token, however, it seems unlikely that able to cook a meal. If we tell it to prove Fermat's last
superior perceptron could win on a similar scale to a superiotheoren . . . All of these, of course, assume that we have
minibrain. given it some kind of hardware with which to gather input
We conclude with further discussion on the nature of in-and make output to the relevant system, whether car, kitchen,
telligence, suggesting a conceptual approach that we believg math textbook—assume, indeed, that we have these sys-
will enable easier investigation of both natural and artifi-iemg present at all—and it is this necessity that causes us to
cially created intelligent systems. Having already suggesteghjize that in factthe mind and its surrounding environment

that we must consider “embodied” intelligences, we provide(mCluding the physical body of the individual) are insepa-

criteria for cataloguing that embodiment, consisting of hard'rable. Our brains are the product of evolution: they are not

wired parts—the input and output systems of the organism o . L
. . . ap abstract, infinite system for solving abstract, infinite prob-
the feedback mechanism that judges the success or failure %Pms, but rather a very particular system for solving the very

behavioral patterns—alongside a dynamic decision-makin . ; . 4 . -
system that maps input to output and updates its methodo%—artlcmar problems involved in coping with the environmen-

: . . al pressures about us. In this respect, we are no different
?egn{ according to the signals received from the feedback SYStom theE. Coli bacterium we discussed earlier: the environ-
' ments we inhabit are different, and consequently so are our
behavioral patterns, but on a conceptual level there is noth-
IIl. WHAT IS “INTELLIGENCE"? ing to choose between us.
Intelligence only exists in the context of its surrounding
TheE. Coli bacterium has a curious mode of behavior. If environment So, if we are to attempt to create an artificial
it senses glucose in its immediate surroundings, it will moveintelligence system, we must necessarily also define a world
in the direction of this sweet nourishment. If it does not, itin which it will operate. And the question dfow intelligent
will flip over and move a certain distance in a random direc-that system is can only be answered by examining how good
tion, before taking stock again, and so on, and so on until iit is at coping with the problems this world throws up, by its
finds food. ability to utilize the data available to it to find working so-
Bacteria are generally not considered to be “intelligent.” |utions to these problems.
Yet this is a systematic response to environmental stimuli,
not necessarily thbestresponse but neverthelessvarking
response, a satisfactory response. EheColi bacterium is |, «\INIBRAIN” AGENTS IN THE MINORITY MODEL
responding in an intelligent way to the problem of how to
find food. How do we square this with our instinctive feeling  The “minibrain” neural system, developed by one of the
that bacteria ar@ot intelligent? Are our instincts mistaken? authors in collaboration with Chialvgl], is an extremal
How, instinctively, do we define intelligence? dynamics-based decision-making system that responds to in-
Historically, philosophers have often proposed the idea oput by choosing from a finite set of outputs, the choice being
a separation between “body” and “mind.” The human determined by Darwinian selection of godce., successful
mind, from this point of view, is something special, some-responses to previous inputsegative feedbagkWe use the
thing distinct, something not bound up in the messy businessimple layered version of this model, consisting of a layer of
of the real world. It is this, we are told, that separates us frominput neurons, a single intermediary layer of neurons, and a
the animals: we have this magical ability tmderstangdto  layer of output neurons; each input neuron is connected to
think, to comprehene-the ability to view the world in a every intermediary neuron by a synapse, and similarly each
rational, abstract way and thus arrive at some fundamentatermediary neuron is connected to every output neuron.
truth about how the universe works. Every synapse is assigned a ‘“strength,” initially a random
The idea of separate compartments of reality for body ansiumber between 0 and 1.
mind has lost its stranglehold over our way of thinking, but Competing against each other in the minority model, each
its influence lingers on in our concept of intelligence. Ouragent receives data about the past, and gives as output which
minds, our consciousness, may be the result of physical pref the two groups—we label them 0 and 1—that it wishes to
cesses, but we still cling to the idea that we have the abilityoin. We follow the convention of Challet and Zhang's ver-
to discover an abstract reality, and it's this idea that informssion of the game, that this knowledge is limited to knowing
our notion of “intelligence.” An intelligent being is one that which side was the minorityi.e., winning group at each
can see beyond its own personal circumstances, one thattigrn in a finite number of past turri8], so that agent input
capable of looking at the world around it in an objective can be represented by a binary numbemdsits, wherem is
fashion. Given enough time, it cdtheoretically solve any the agent's memory. So, for example, if in the last three turns
problem you care to put before it. It is capable of risinggroup O lost, then won, then won again, this would be rep-
above the environment in which it exists, and comprehendresented by the binary number 110, where the left-most bit
ing the nature of True Reality. represents the most recent turn, and each bit is determined by
Naturally, this has informed our ideas about artificial in-the number of thelosing (majority) group that turn(we
telligence. An artificially intelligent machine will be one that choose these settings in order to match the way our computer
works in this same environmentally uninhibited manner. Ifcode is set up
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FIG. 1. Architecture of minibrain agents. Every input neuron is
connected to every intermediary neuron, and every intermediary %36 T T " j T T " T !
neuron is connected to every output neuron. For our setup, we hawvi
two outputs, and &1 inputs, wherem is the agent's memory. Agent memory

In order to preserve symmetry of choice between the two F_IG. 2. _Success rates of a mixed population (_)f minibrain agents
groups, an agent with a memory of turns will have 2n against their memory. Agents have 48 intermediary neurons.
input neurons, with the first of thieh pair of neurons firing if
the bit representing the restiltturns ago is 0, the second tossing coins to make their decisions.. The even spread of
neuron of theth pair firing if the result was 1. For example, memory values throughout the population means that agents
if an agent with a memory of 3and hence with 6 input With higher-memory values cannot take full advantage of
neurong is given the past 110 as we discussed above, thefieir extra knowledge: the crowding behavior between
the second, fourth, and fifth input neurons will fire. Figure 1@gents with the same memory cancels out most of the posi-
gives a picture of this architectuteo avoid over complicat- five effects. It is no good having lots of data on which to
ing the diagram, not all connections are shpwn base your deC|S|o_n if lots of other people haye that same
To determine the intermediary neuron that fires, we tak&lata—everyone will come to the same conclusion and, in the
for each the sum of the strengths of the synapses connectifginority model, that means losing.
it to the firing input neurons. The intermediary neuron with ~ Necessarily, then, one of the conditions for an agent to
the greatest such sum is the one that fires. Then, the outp@ticceed—i.e., to beat the coin-tossing strategy—is that there
neuron that fires (0 or 1) is the one connected to the firingnust be few other agents with the same amount of memory.
intermediary neuron by the strongest synapse. his is demqnstrated starkly in Fig. 3, displaying the results
Each turn, the synapses used are “tagged” with a chemifor @ population of 251 agents of whoomehas a memory of
cal trace. If the output produced that turn is satisfactamy 3. the rest only 2. . _
this setup, if the agent joins the minority groupo further The astonishing success of this “rogue” agéittmakes
action is taken. If the output is not satisfactory, however, dhe right decision approximately 99.8% of the timghows
global feedback signdk.g., the release of some hormpi plearly just how important a factor this crowding l_Jehawor_ls
sent to the system, and the tagged synapses are “punished? the succeséor fqlllure) of agents. The fact that this agent is .
for their involvement in this bad decision by having their the only one receiving the extra data means that he can use it
strengths reduceéin our model, by a random number be-
tween 0 and 1). As we noted in the Introduction, this Dar- 15 o
winian selection of successful behavioral patterns has al- g |
ready been shown to be an effective learning system wher
“going solo” [1]; how will it cope when placed in compe-
tition? 0.7
Figure 2 shows the success rates of agents of differeng |
memory values. A group of 251 agents has an even spread cE
memory values between 1 and 8; each agent has 48 interme#
diary neurons. The figure shows their success rates over mg 0.4 -
period of 2x 10* turns. 03 - o
To a certain extent, these results reflect those found by

0.3 A

0.5 1

Challet and Zhang when they explore the behavior of a %27
mixed population of fixed-strategy agen], inasmuch as 0.1
performance improves with higher memory but tends to satu- ‘ ‘ . .
rate eventually. Standard deviation within each memory o ] 2 3 4

group is much lower for minibrain agents, however, suggest-
ing crowding behavior within memory groups, and we will
later show that this does indeed occur. FIG. 3. Success rate of a single agent of memory 3, versus a

Disappointingly, we see that not one agent achieves ags50-strong population of memory 2. Agents have 48 intermediary
much as a 50% success rate—they would all be better offeurons.

Agent memory
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FIG. 4. Success rate of a single agent of memory 8, versus ¢ ¢ . . . : . ,
250-strong population of memory 4. Agents have 48 intermediary 0 1 2 3 4 s 6

neurons. Agent memory

to his advantage. Contrast this with the other agents who, for g, 5. Success rates of single agents of memory 5, versus a
all their careful thinking, fail miserably becauagnost all of  250-strong population of memory 4, in simulations with 64, 96,
them think alike—entirely independently—almost all of the:|_28, and 256 intermediary neurons per agent.

time.

This example leads us to ask the more general question: .
given a population of agents who all have memorycan we these games. Flgure. 5 shows the result; of games where
always find such a “rogue,” an agent capable of understang@9€ents have intermediary layers of, respectively, 64, 96, 128,
ing and thus beating the system? That it is not merely &nd 256 neurons. o _
matter of agent memory is amply demonstrated in Fig. 4, The implications are clear—it is the number of interme-
Where we see a popu|ation Of memory 4 p":ted against &Iial’y neurons, as We” as the amount Of memory, that Control
rogue with a memory of 8. whether or not a rogue agent can succeed, and, if it does, by

Despite its high memory valugwice that of the majority how much. A higher memory value will always be an advan-
population the rogue agent is unable to beat the coin-tossingage, but the degree to which it is advantageous will be de-
strategy. Why is this? A higher memory value should, by ourtermined by the number of intermediary neurons possessed.
earlier results, always be an advantage. Certainly, since wielemory, obviously, determines how much information an
have respected symmetry of choice between agent outputs,dgent can receive; the intermediary neurons are what provide
should not be aisadvantageWhat factor is it that prevents agents’ analytic capability.
this agent from making full use of the memory available to  Our computer simulations suggest that in situations such
it, memory that surely has within it useful data patterns thatas the ones already discussed, with a majority population of
predict the behavior of the agents with memory 4, and thusnemory m, it is the intermediary neurons, rather than the
should allow the rogue agent the success we expect it tamount of memory possessed, that control the ability of a
achieve? rogue agent to succeed. A memory oft 1 is all that is

The answer becomes clear when we examine the nature eéquired,providedthe rogue has enough intermediary neu-
the input that each agent receives—a binary number ofons to be able to use it effectively.
lengthm, wherem is the value of the agent’'s memory. So, it We can muddy the waters, so to speak, by giving the
follows that the total possible number of inputs will b&.2  majority population an evenly distributegpreadof memory
For an agent with memory 4, this means 16 possible inputssalues (perhaps from 1 tam) rather than a single value.
For an agent with memory 8, the total number of possibleWhere a single memory value is used, the crowding behavior
inputs is 256. Compare this to the numberinfermediary  observed within memory groups will easily allow rogue
neurons possessed by each agent (48, in all the simulatiomgents to predict the minority group. With a series of differ-
we have run so farand we realize that, while this is an ent, smaller groups in competition, it becomes significantly
adequate number for an agent receiving 16 different possibless easy to make accurate predictions, and rogue agent suc-
inputs, it is wholly inadequate for an agent having to dealcess rates fall significantly. Herding sheep is fairly easy;
with some 256 possible inputs. The number of intermedianjumping into the middle of a brawl is dangerous for anyone,
neurons restricts the maximum performance of an agent bgven a world champion martial artist.
placing a limit on the amount of memory that can be effec- All things considered, it seems as though this may be the
tively used. key point in determining agent success. An agent can only be

Bearing this condition in mind, we run another set of truly successful if it has plenty of “prey” whose weaknesses
games, again with a majority population of memory 4, butit can exploit. If the behavior of the prey is highly unpredict-
this time with a rogue of memory 5, and with the number ofable, or the prey are capable of biting back, the agent's
intermediary neurons given to each agent varying in each ofhances of success are vastly reduced.
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IV. ANALYSIS OF CROWDING BEHAVIOR 0.68 -

WITHIN MEMORY GROUPS .56 | c

We have on several occasions referred to crowding be‘E’ o6t
havior of minibrain agents within the same memory group. & | 0
In this section, we give a brief mathematical analysis of whatE 062 1
causes this to arise. °

We begin with a simple case, assuming that all agents§ ¢ ¢
have the same memory value. Obviously, because of the na§ 0.5
ture of the game, a majority of these agents will behave in=
the same way each turn. What we show, however, is that this 3 1 c g
majority is significantly more than would be found if the 054 ‘ , : ' ‘ ‘ , ‘ ‘
agents were deciding randomly as to which group to join. 0 1 5 3 4 5 p 7 g 9
Were agents to employ this strategy, the mean size of the
(losing) majority group would be only a little over 50%.

We define by G=x;(1)<0.5 the proportion of agents in FIG. 6. Mean size of majority each turn in games with uniform
the minority group given inpuit, where the subscriptis the  agent memory, against different choices for this memory value.
number of times input has occurred before. If an input has Agent population per game is 251, but majority size is given pro-
not been seen before by agents, it follows that they willportionally. Agents have 48 intermediary neurons.
decide randomly which group to join, and so we have
Xo(1)=0.5 for all possible inputs.

If an input has been seen before, it follows that those — Xn+1(1)= [1 Xn(1)]
agents in the minority group on that occasion—i.e., those
who were successful—will make the same decision as last

Agent memory

time. Those who were unsuccessful last time will make a - 5[1_90(”_1“]
random decision as to which group to join. We can expect,
on average, half of them to change their minds, half to stay 1 1(2" (=) 2
with their previous choice. ) 1- 3 T
The effect of this, ironically, is that this last group—the
unsuccessful agents who keep with their previous choice— (—1)n-t
will probably (in fact, almost certainly form the minority +—(1—x0(|))H
group this time round. And so we can define a recurrence 2"
relation,
1|/1[/3x2" -2 14 (—1)n1
=53 2n—1
Xi+1(1) 1[l Xi(1)]
i+1l)=511L7X ) —1)n
? A Xo('))]

determining the expected proportion of agents joining the 1[1(2"+(—1)" ¢t (_ )n
minority group for each occurrence of inpufThis allows us =53 — [1—Xo(1)]
to develop a more general equation, 2

[1—Xo(D)]

1 2"+(—1)”1) Lo
Xi2(D)=e(i,1), 3 on on+1
=e(n,l).

Hence X, 1(1)=¢(n,l), and so by the induction hypothesis
Xi+1(1)=¢(i,l) for all i=0.
24+ (—1)i~ (1) It follows, then, that as's_—m, sox.i(l)—>%, and so, with
. ) [1—xo(D)]. repeated exposure to the ingutve will find that on average
2! 211 £ of the agents will produce the same output. As a result, the
average majority size per tutregardless of input giverwill
also tend to$ as the agents become saturated by all the
Observe that this holds far=0, as a little calculation possible inputs.
reveals x;(1)=3(1—xo(1))=¢(0,J). Now, assume the This can be observed in Fig. 6, which shows the average
equation holds foi=n—1, with n any positive integer, so proportion of agents joining the majority group each turn in
Xn(D=¢(n—=1)). eight different games involving single memory value popu-
By the recurrence relation, lations, the first involving agents of memory 1, the second

where

e, l)—
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with agents of memory 2, and so on up to the final game, ¢
with agents of memory 8. Each game takes place over a time 4 =
period of some X 10° turns.
As memory increases, so the number of possible inputs %" 0
also increases, meaning there is less repeated exposure ;.
individual inputs, and hence less crowding for a given time £ 8 8 o o
period. Within a time scale of 810 turns, the behavior of g 857 8
agents with longer memories is random more often than not.g o, . 9 o o
and so the mean size of majority is similar to that of agentsz
making random decisions. As the number of turns increases %3 o o
so we can expect the mean size of the majority to tengl to e
for all memory values, not just the lowest.
What implications does this have for games involving a 91
mixed population of agents, such as that displayed in Fig. 27 i , . , ,
Overall, the same principles will apply. Repeated exposure o i 2 3 4 s ¢ 4 3 9
to the same input will produce the same crowding effect. But Agent memory

we note that the inputs given to this system—eight-digit bi-
nary numbers—are interpreted differently by different
agents. For agents with lower memori_es, many of these “dif- £ 7. success rates of rogue agents of memory 5—8, versus a
ferent” inputs are interpreted as being the same. For eXmajority population with memory 1-3, in games involving single
ample, the inputs 11010010 and 11001011 are the same t0 @lnishment and “infinite” punishment of unsuccessful synapses.
agent with a memory of 3 or less. So—as is demonstrated byotal agent population is 251. Agents have 256 intermediary
Fig. 6—the crowding effect surfaces earlier in agents withneurons.
lower memory values, and hence they are adversely affected
to a greater degree. and be successful. A higher memory value is required for
The agents with higher memory values fail to beat thesubstantial success, but substantial success is possible—at
50% success rate, however, because there are too many thkt expense of the lower memory groups, whose success
them—any insights they might have into the crowding be-rates are substantially decreased by the extra crowding be-
havior of the lower memory groups are obscured by the achavior they are forced to produce. The rogue agents in the
tions of their fellow high-memory agents. Thus, the kind of game with single punishment, by contrast, are barely able to
behavior we see in Fig. 2: the lower-memory agents perforngio better than a 50% success rate—though they can evi-
the worst, with the success rate increasing towards somgently gleansomedata from the crowding behavior dis-
“glass ceiling” as agent memory increases. It's only uniqueplayed by the lower-memory groups, it is not sufficient for
“rogue” agents, who don't have a large group of fellows, any great success and they are only barely able to beat the
who can see the crowding effect and thus beat the systemexpected success rate, were they to make purely random de-
Even such rogue agents cannot succeed by any great majisions.
gin in the case where they are pitted against a spread of This is a striking result, to say the lea3the inevitable
memory values. The crowding behavior of the individualconsequence of an analytic strategy is a predisposition to
groups is obscured by the large number of them and predidailure. Challet and Zhang3] and Arthur[4] have already
tions become difficult; the rogue has to work out, not just inshown that fixed strategies can prove to be a disadvantage
which direction the crowding within each group will go, but compared to random decisions; this occurs when the number
how much crowding will be taking place in each group—aof available strategies is small compared to the number of
difficult task indeed. agents. The crowding behavior that results from minibrain
If we increase the crowding, we also increase the rogue’agents’ imperfect analysis will inevitably reduce the number
chances of success. Figure 7 shows the results from twef strategies in use, thus dooming them to worse-than-
different games involving 251 agents. Five of them arerandom results.
“rogue” agents with memory values of, respectively, 4, 5, We can see this at work in the real world, every day.
6, 7, and 8. The rest have an even spread of memory valuégany strategies—whether for investments, business strate-
from 1 to 3. In order to allow the higher memory values to gies, forming a relationship, or any of the myriad problems
be useful, we give agents 256 intermediary neurons. Theve have to solve—fail, because they are based on common
difference between the games is that in the first, when purknowledge, and as such, will be similar to most other peo-
ishing unsuccessful synapses, we employ the principle thaile's strategies. We are often told, “Everybody knows that
has been used throughout this paper—synapses are punished. ,” but few people realize the negative side of following
once In the second game, the punishment does not stop untduch advice: sinceverybodyknows it, everybodywill come
the agent has learned what would have been the correct out the same conclusions as you, and so your strategy will be
put. The result is that, when an input has been seen beforanlikely to succeed. Perhaps the best recent example is the
we will have 100% agreement within memory groups. internet boom and bust: so many people thought the internet
We can see here how the increased crowding caused lwas the place to invest, the market overheated, and many
“infinite” punishment allows the rogues to take advantagecompanies went belly up.

Q single punishment £ infinite prnishmeny
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As this paper was being prepared, a report was broadcasttelligent in the context of their sport because they are ca-
on UK television about an experiment in which a four-year-pable of winning consistently.
old child, picking a share portfolio, was able to outdo highly  Even human IQ tests, long thought to provide an abstract
experienced City traders on the stock market. In such sysnd objective measure of intelligence, work in this fashion,
tems, with everyone’s imperfect analysis competing againsheing a measure of an individual’s success in solving logical
everyone else’s, it seems highly likely that random _deCiSionErobIems. More recently these tests have been shown to dis-
sometimes really are the best; the minibrain/minority modekyiminate against certain individuals based on their cultural
combination would appear to confirm this. background—a further indication of their nonabstract, non-
objective nature—and in addition to this, psychologists are
now proposing that there are other forms of intelligence, for
exampleemotionalintelligence or “EQ,” which are just as
Another interesting conclusion to be drawn from the com-important to individual success as intellectual ability.
puter experiments here described is that, given some particu- Were abstract measures of intelligence possible, it would
lar minibrain agent, there is no way of deciding if it will be be reasonable to ask: “Who was more intelligent, Albert
successful or not unless we know about the other agents Einstein or Ernest Shackleton?” As it turns out, this question
will be competing with. is impossible to answer. Shackleton probably lacked Ein-
In a sense this is not surprising. We know, for example stein’s capacity for scientific imagination, Einstein probably
that to be a high flier at an Ivy League university requiresdidn’t know a great deal about arctic survival, but both were
considerably more academic ability than most other educahighly successful—and thus by implication intelligent—
tional institutions. The athlete coming last in the final of thethe context of their own chosen way of lifhe same is true
Olympic 100 m can still run faster than almost anyone else irof our hypothetical Ivy League student and Olympic runner.
the world. We know thain these contextthe conditions to  We suggest that no other possible measure of intelligence is
be the “best” are different, but there is surely still an overall truly satisfactory.
comparison to be made between the whole of humanity. Or It is not an entirely easy concept to take on board. In
is there? Recall our suggestion in the introduction to thigarticular, it conflicts with our instinctive sense of what it
paper that the question of how intelligent a system is carmeans to be “intelligent.” Casually—and not so
only be answered by examining how good it is at copingcasually—we talk about people’s intelligence in the context
with the problems its surrounding environment throws up.of their understandingtheir conceiving their awarenessin
To return to minibrain agents: by the concepts we discussedther words, we talk about it in the context of theion-
earlier, it is agentsintelligence and not just their success sciousness In their paper “Consciousness and Neuro-
rate, that is dependent on their fellows’, as well as their ownscience”[6], Crick and Koch refer to the philosophical con-
characteristics. Indeed, the two measures—success awdpt of a “zombie,” a creature that looks and acts just like a
intelligence—cannot be separated. human being but lacks conscious awareness. Using the con-
Contrast this with how we have identified a whole rangecepts of intelligence we have been discussing, this creature is
of factors—memory, the number of intermediary neuronsjust as intelligent as a real human.
the amount of punishment inflicted on unsuccessful Yet, on closer examination, this is not such an unreason-
synapses—that affect the manner in which an agent perble idea. Such a “zombie” is probably scientifically unten-
forms. There are objective comparisons that can be madable, but it should be noted that our measures of “intelli-
between agents. While we might accept that any measure gfence” do not measure consciousness, at least not explicitly.
“intelligence” we can conceive of will only hold in the con- A digital computer can solve logical problems, for example,
text of the minority model, surely it is not fair to suggest thatand it seems very unlikely that such computers are con-
the only valid measure of intelligence is success rate in thecious. The “emotional intelligence” we referred to earlier
context of the population of agents we place within thatalmost certainly has some unconscious elements to it: our
world? ability to respond to a situation in an appropriate emotional
Before we rush off to define our abstract “agent 1Q,” manner tends to be an instinctive, more than a conscious,
however, it is worth noting that all the measureshoiman  response. Lizards, it is thought, lack a conscious sense of
as well as minibrain, intelligence that we have put in placevision but they can still catch prey, find a mate, and so on,
are in fact measures of success in particular contexts. Whausing their visual sense to do so. In fact, most of the organ-
a teacher calls a pupil a “stupid boy,” he is not commentingisms that exist on earth are probably not conscious. Con-
on the child’s intelligence in some abstract sense, but rathesciousness, most likely, is a product of brain activity that is a
the child’'s ability to succeed at the tasks he is set in thauseful survival aid, a useful aid for success. &d for suc-
school environment(Einstein was considered stupid in the cess, and thus for intelligence, rather than a requirement.
context of a school environment where dyslexia and Asperg- How, then, should we approach the question of what is an
er's syndrome were unknownWhen we say that human intelligent system? In their description of the construction of
beings are more intelligent than other animals what we irthe minibrain neural system, Bak and Chialvo note: “Biol-
fact mean is that human beings are more successful at magy has to provide a set of more or less randomly connected
nipulating their environment to their own benefit. High fliers neurons, and a mechanism by which an output is deemed
at vy League universities are considered intelligent becausensatisfactor . . . . It isabsurd to speak of meaningful brain
of their academic success. Olympic athletes are considergatocesses if the purpose is not defined in advance. The brain

V. “INTELLIGENCE” RECONSIDERED
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cannot learn to define what is good and what is bad. Thigilling a bacterium. A system that keeps making the same
must be given at the outset. From there on, the brain is on itdecision regardless of how consistently successful that deci-
own” [1]. These concepts provide us with a way of thinking sion is, isn’t being intelligent. With this in mind, we might
about intelligent systems in general, whether naturally occurconsider systems such &s Coli (i.e., systems that employ
ring biological systems or man made artificial intelligenceone single strategy, and when it becomes unsuccessful sim-

systems. _ o ply stop to be minimally intelligentsystems. They are no-
An intelligent system might be thought of as consisting ofyyhere near as smart as other systems, natural and artificial,
the following parts: but at least they know when to quit.

(i) A hardwired set of inputs and outputs, which the sys-
tem cannot changdt can perhaps change which of them it
takes notice of and which of them it uses, but its options ar
fixed and finite.

(ii) A decision-making systerfiven an input, a system-
atic process is applied to decide what output to make. Thi
can range from the purely deterministe.g., a truth table of

Intelligence, we suggest, is not an abstract concept. The
question of what is intelligent behavior can only be answered
%n the context of a problem to be solved. So in the search for
artificial intelligence, we must necessarily start with the
gvorld in which we want that intelligence to operate; we can-
not begin by creating some ‘“consciousness in a box” to
required output for each given inpub the completely ran- which we then g?ve a purpose, but must first gstgblish what
dom. TheE. Coli bacterium’s behavior in response to the W& Wwant that intelligence todo, before building the
presence or otherwise of glucose—either moving in the diSyStems—input/output, decision-making, feedback—that
rection of the food or, if none is to be found, in a randomWill best achieve that aim. Computer programmers already
direction—is a perfect example. have an instinctive sense of this when they talk about, for
(i) A hardwired system for determining whether a givenexample, the “Al” of a computer gamePurpose: to beat
output has been successful, and sending appropriate fee@he human player. No longer the deterministic strategies of
back to the systergain, the nature of this can vary. In our Space Invaders—many modern computer games display a
computer experiments, success is defined as being in the ngreat subtlety and complexity of behavioiThis is not to
nority group. For theE. Coli bacterium, success is finding denigrate attempts to build conscious machines. Such ma-
food. Possible types of feedback range from the positive reehines would almost certainly provide the most powerful
inforcement of successful behavior practiced by many neurdbrms of artificial intelligence. But we are still a long way
network systems, to the negative feedback of the Minibrairfrom understanding what consciousness is, let alone being
model. TheE. Coli bacterium provides perhaps the mostable to replicate it, and as we have noted here, consciousness
extreme example: if it does not find food within a certainis not necessarily needed for intelligent behavior.
time period, it will die. The experiments discussed in this paper involve “toy”
The last of these is perhaps the most difficult to come tanodels. Comparing the minibrain neural system to the real
terms with, simply because as human beings, we instinchuman brain is like comparing a paper airplane to a jumbo
tively feel that it is aconsciouschoice on our part as to jet [1]. But paper airplanes can still fly, and there are still
whether many of our actions have been successful or notessons to be learned. These “toy” experiments provide us
Nevertheless, the ultimate determination of success or failureith a context to begin identifying what it means to be in-
must rest with hardwired processes over which the decisiortelligent. We have been able to suggest criteria for identify-
making system has no control. If nothing else, we are aling intelligent systems that avoid the controversial issues of
subject to the same considerationEasColi: if our actions do  consciousness and understanding, and a method of determin-
not provide our physical bodies with what they need to suring how intelligent such systems are that rests on one simple,
vive, they, and our brains and minds with them, will perish.useful, and practical question: how good is this system at
We should, perhaps, include an extra criterion that for aloing what it is meant to do? In other words, we and others
system to beruly intelligent, the feedback mechanism must have begun to demystify the subject of intelligence and ma-
in some way affect the operation of the decision-making sysneuver it into a position where we can begin to ask precise
tem, whether it is punishing “bad” synapses in the mini- and well-defined questions. Paper airplanes can fly for miles
brain neural network, changing the entries in a truth table, oif they're launched from the right places.
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